
Date: 7/26/2015
Slide: 1

Log Book

Copyright ComroeStudios LLC, ©2015

Design Study

AC Remote
Instrumentation,

Data Collection, and
Monitoring

Date: 7/26/2015
Slide: 2

Log Book

Copyright ComroeStudios LLC, ©2015

AC Current Monitoring Instrumentation

To monitor power usage, instrumentation may
most readily measure current right off a branch
circuit at the breaker box.

For example, various machines such as
compressors and pumps, are typically each wired
with their own individual breaker.

Diagnostics for machine health often start with the
measurement of current draw. Monitoring AC
current is a natural starting place for
instrumentation.

Date: 7/26/2015
Slide: 3

Log Book

Copyright ComroeStudios LLC, ©2015

How many lines?

Inexpensive devices can be obtained, such as the Kill-A-Watt, to
monitor a single outlet

For multiple lines, or designing a monitor for a breaker (as opposed to
an outlet), A/D converters can be found in inexpensive controllers such
as the PIC, which comes with multiple ADC inputs

However, even a typical home may have a breaker box with dozens
and dozens of breakers. I have more than 1 breaker box, the larger
containing 40 breakers

Date: 7/26/2015
Slide: 4

Log Book

Copyright ComroeStudios LLC, ©2015

Modular Design

A modular design seems warranted composed of a
PIC along with multiplexed interface to monitor
additional lines. The rest of this design will describe
a controller to which interface modules may be
connected to accommodate 16 lines each, with the
ability to connect up to 4 interface modules for a total
of 64 lines

This example with 3 interface
modules can measure 48 lines

Date: 7/26/2015
Slide: 5

Log Book

Copyright ComroeStudios LLC, ©2015

Decomposition

The system will breakdown into modular components

• A Commercial Off-The-
Shelf (COTS) Single
Board Computer (SBC)
controller

• Up to 4 decoder boards
• (2) decoder board

address lines
• (4) 4016 analog

switches on each
decoder board

• (2) 4016 select address
lines

• (4) analog channels
from selected 4016 on
selected board

• 6 bit transducer
addressing by the
controller

• 2 bits board select
• 2 bits 4016 select
• 2 bits analog line select

• Up to 64 current
transducers

• Up to 16 per decoder
board

SBC connector

Decoder Board connector

An interface connector module will adapt from the SBC
connector to the decoder board connector which may
daisy chain to additional connector boards

Date: 7/26/2015
Slide: 6

Log Book

Copyright ComroeStudios LLC, ©2015

Controller Module

• Compact SBC with Ethernet

• RS232
• I2C

• 12 Analog Inputs
• 32 Digital I/Os

• free TCP/IP Stack
• Bootloader

• PIC18F6627
• Web Based Configuration

Modtronix SBC65EC

Modtronix is an Australian
company from Sydney.
They make a variety of
SBCs with communication.

Date: 7/26/2015
Slide: 7

Log Book

Copyright ComroeStudios LLC, ©2015

Interface Module

• The 2 msb address bits are fed
to one 4028 (through a board
select jumper) to enable the 2nd

4028
– Up to 4 interface modules may be

daisy chained together, each with
a different board select jumper
position

• The next 2 bits of address are
fed to the 2nd 4028 to select
which 4016 will be enabled

• Thus 4 analog lines from a
selected 4016 will drive the 4
analog lines back to the
controller A/D

• Selection of which of the 4 A/D
lines is determined by the lsb 2
bits of the address within the
controller software

Interface Module use a pair of 4028 decoders

Date: 7/26/2015
Slide: 8

Log Book

Copyright ComroeStudios LLC, ©2015

Analog Interface

• Each 4016 has 4 analog
inputs

• (4) 4016s provides 16 analog
inputs per Interface Module

• Each of the 16 analog inputs
is provided
– A pair of header pins to a

connect a current transformer
module

– A pull-up resistor to 12v
– Capacitive coupler
– A pair of bias resistors to mid-5v

12V

2.2kΩ 4.7µf

10kΩ

10kΩ

5V

4016

This per-input analog interface is
a look-ahead to the following

section that defines the current
transformer module

Date: 7/26/2015
Slide: 9

Log Book

Copyright ComroeStudios LLC, ©2015

Interface Module

• Daisy chains to 14pin connectors
on other interface modules

• Daisy chain terminates on
Interface Interconnect module

• Up to 4 Interface Modules may be
uniquely addressed

• Each Interface Module can select
from 16 addressable analog
inputs

• Status LED indicates when the
Interface Module is selected

Back side

Component side

Date: 7/26/2015
Slide: 10

Log Book

Copyright ComroeStudios LLC, ©2015

Interface Module PCB

• 1 Interface Module layout

Date: 7/26/2015
Slide: 11

Log Book

Copyright ComroeStudios LLC, ©2015

Current Sensing

• The current transformer uses a
single 12V NPN transistor
pickup amplifier

• The signal is coupled to mid-5V
to a 4016 analog switch

• Many 4016 outputs can be tied
in parallel, where only one is
enabled at any moment to drive
the PIC A/D input

• The current transformer module
is the single transistor with
open-collector output, such that
only 2 wires are needed to
connect to the output pull-up
resistor on the interface module

12V

4.7µf

2.2kΩ

2.2Ω

150kΩ

20kΩ

39Ω

2N3904

4.7µf
10kΩ

10kΩ

5V

4016

enable

PIC A/D input

100-700µh

2
w

ire
 in

te
rf

ac
e

Current Transformer Module Interface Module

Date: 7/26/2015
Slide: 12

Log Book

Copyright ComroeStudios LLC, ©2015

Current Transformer Modules

• Current transformer modules can be assembled
using different size toroids
– Mainly to accommodate various wire gauge

• Current transformer modules may be coated
with encapsulant to make weather resistant

Large toroid
Small toroid

Plasti-dipped

Date: 7/26/2015
Slide: 13

Log Book

Copyright ComroeStudios LLC, ©2015

Current Transformer PCB

• 18 circuit board layout

Date: 7/26/2015
Slide: 14

Log Book

Copyright ComroeStudios LLC, ©2015

Interface Interconnect Module

• Connects to one of the
20pin connectors on
controller

• Daisy chains to 14pin
connectors on interface
modules

• Versions with and
without watch-dog timer

Connector side

Component side

Date: 7/26/2015
Slide: 15

Log Book

Copyright ComroeStudios LLC, ©2015

Why an External WatchDog Timer?

• An external watchdog timer cannot be disabled
• An external watchdog timer cannot be cleared

by a single errant instruction
• In short, I found the controller frequently hung

using only software watchdog timer, but I’ve
never seen the controller hung with external
watchdog timer

External WatchDog is Better than Software WatchDog

Date: 7/26/2015
Slide: 16

Log Book

Copyright ComroeStudios LLC, ©2015

Why both versions of Interface Interconnect?

• When running controller code without
external watchdog timer actions, the
external watchdog timer causes repeated
restart

• Therefore one needs a means of disabling
the external watchdog timer, or a version
of Interface Interconnect without
watchdog.

Date: 7/26/2015
Slide: 17

Log Book

Copyright ComroeStudios LLC, ©2015

PC0

MCLR

Heartbeat Operation

PC0 = output

PC0 = 0

Normal State

PC0 = input

PC0 = 1

Heartbeat Operation

PC0 = output

PC0 = 0

Normal State

PC0 = input

PC0 = 1

External Watch Dog Timer

R1 = 150KΩ
24sec initial

14sec cycled

• Low output on PC0 from the controller is used to keep watchdog
timer alive

• Watchdog timer pulls MCLR line to controller to force restart

Date: 7/26/2015
Slide: 18

Log Book

Copyright ComroeStudios LLC, ©2015

WatchDog Timer keep alive trigger

• The controller is intended to be polled regularly

• Activating the watchdog keep-alive is added to
controller software polling response
– PC0 momentarily set to output logic low

• If the controller has not recently responded to a
poll, the watchdog timer forces reset

• Therefore the watchdog timer interval should be
set to little longer than the intended polling
interval

• For example: if intended polling is <10seconds between polls,
watchdog timeout should be >10seconds

Date: 7/26/2015
Slide: 19

Log Book

Copyright ComroeStudios LLC, ©2015

Interface Interconnect PCB w/WDT

• 3 circuit board layout with watchdog timer

Date: 7/26/2015
Slide: 20

Log Book

Copyright ComroeStudios LLC, ©2015

Interface Interconnect PCB

• 5 circuit board layout without watchdog timer

Date: 7/26/2015
Slide: 21

Log Book

Copyright ComroeStudios LLC, ©2015

A/D Samples

A/D Samples

460

470

480

490

500

510

520

530

540

550

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116

sample

V
al

u
e

• We note that with a 10bit A/D, the
samples hover around 512

• This is because a 10 bit A/D has a max
value of 1023, and the 4016 circuit inputs
were biased at half voltage (mid 5V)

• Sampling a selected current
transducer at a rate much higher
than 60hz, we can see the 60hz
sensed signal

• This is at a sampling rate of
1200Hz where there are 20
samples of every 60Hz cycle

• Note that the samples are not
uniformly sinusoidal.

• This is because the current
transducer is not a perfect linear
sensor

• This will influence how we
attempt to compute amplitude of
a sampled waveform

Date: 7/26/2015
Slide: 22

Log Book

Copyright ComroeStudios LLC, ©2015

Amplitude of a pure sinusoid

Perfect Sinusoid

-1.5

-1

-0.5

0

0.5

1

1.5

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116

sample

va
lu

e

If we were sure we had
samples of a perfect
sinusoid, we merely need
to subtract the minimum
sample from the maximum
sample observed over any
interval of 1/60th of a
second

That would be the Peak-
to-Peak measurement of
the sinusoid amplitude

… but we don’t have a
perfect sinusoid because
of nonlinearities in the
current transformerSome small sampled peak-to-peak measurement error exists regarding how high

the sampling rate is and how close the highest sample is to the true sinusoidal peak
… small as depicted with a 20 times sampling rate

Date: 7/26/2015
Slide: 23

Log Book

Copyright ComroeStudios LLC, ©2015

Nonlinearities can be Removed

Our non-perfect sinusoidal
samples indicate the
presence of odd order
overtones produced by the
circuit nonlinearities

A/D Samples

460

470

480

490

500

510

520

530

540

550

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116

sample

V
al

u
e

frequency

am
pl

itu
de 60Hz

180Hz

300Hz
420Hz

We can simply REMOVE all the overtones in
software using digital signal processing, leaving
just the sensed 60Hz pure sinusoid

Date: 7/26/2015
Slide: 24

Log Book

Copyright ComroeStudios LLC, ©2015

Digital BandPass Filter

• Generated by: http://www-users.cs.york.ac.uk/~fisher/mkfilter
• 2 pole bandpass filter with 1200Hz sampling

Recurrence relation:

2nd Previous inputx[n-2]

Previous inputx[n-1]

Current inputx[n]

2nd Previous outputy[n-2]

Previous outputy[n-1]

Current outputy[n]

What the terms mean:

y[n] = (-1 * x[n- 2])
+ (0 * x[n- 1])
+ (1 * x[n])
+ (b * y[n- 2])
+ (a * y[n- 1])

x[n] y[n]
+

x[n-1] y[n-1]

x[n-2] y[n-2]

*a

*b

*1

*-1

*0

input side summation is
simplified to x[n] – x[n-2]

Date: 7/26/2015
Slide: 25

Log Book

Copyright ComroeStudios LLC, ©2015

Alternate Form

Alternate form: Needs fewer
temporary values

one less temp value***

2nd Previous intermediatez[n-2]

Previous intermediatez[n-1]

Current intermediatez[n]

Current inputx[n]

Current outputy[n]

What the terms mean:

y[n] = (-1 * z[n- 2])
+ (0 * z[n- 1])
+ (1 * z[n])

z[n] = (1 * x[n])
+ (b * z[n- 2])
+ (a * z[n- 1])

x[n] y[n]+

z[n-1]

z[n-2]

z[n]
+

*a

*b

*1

*-1

*0

*1

*-1

*0

output side summation is
simplified to z[n] – z[n-2]

Date: 7/26/2015
Slide: 26

Log Book

Copyright ComroeStudios LLC, ©2015

BandPass Filter Parameters

• 50-70Hz BandPass
a = -0.9004040443
b = 1.8098720166

• 40-80Hz BandPass
a = -0.8097840332
b = 1.7306877866

• 30-90Hz BandPass
a = -0.7265425280
b = 1.6625077511

Parameters for 3 different width filter choices

frequency

60Hz

50-70Hz

frequency

60Hz

40-80Hz

frequency

60Hz

30-90Hz

Date: 7/26/2015
Slide: 27

Log Book

Copyright ComroeStudios LLC, ©2015

Effect of Digital Filter Width on Ramp-Up

-600

-400

-200

0

200

400

600

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115

frequency

60Hz

50-70Hz

There is a direct link between the width of the digital filter and
the ramp-up time for the filter output to reach steady state

Date: 7/26/2015
Slide: 28

Log Book

Copyright ComroeStudios LLC, ©2015

Effect of Digital Filter Width on Ramp-Up

-600

-400

-200

0

200

400

600

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115

-300

-200

-100

0

100

200

300

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120

frequency

60Hz

50-70Hz

frequency

60Hz

40-80Hz

-250

-200

-150

-100

-50

0

50

100

150

200

250

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120

frequency

60Hz

30-90Hz

30-90Hz digital
filter ramps up
within a 1/120th

second (half of
1/60th of a second)

Too slow a ramp-up
would require monitoring
an input longer before
taking a measurement,
and slow down the
number of
measurements per
second we could make.

Date: 7/26/2015
Slide: 29

Log Book

Copyright ComroeStudios LLC, ©2015

Sampling Multiple Inputs

• The controller can sample 30 inputs a second, watching
each input for 1/60th of a second, and then capturing
min & max values in the next 1/60th second

• At that rate it can sample a full compliment of 64 inputs
every 2.13 seconds

1st
1/60th

second

2nd
1/60th

second

Sample
an input

Sample
an input

Sample
an input

Sample
an input

Date: 7/26/2015
Slide: 30

Log Book

Copyright ComroeStudios LLC, ©2015

Fractional Coefficients

Question: How does one multiply by coefficients close to 1
(or less than 1) using integer arithmetic?

a = -0.7265425280
b = 1.6625077511

Answer: Multiply the coefficients by 256 (shift by 1 byte),
with the understanding that the least significant
byte represents fractional component, with the
2nd byte representing integers

a*256 = 185
b*256 = 425

Adding a byte is just an integer trick to add a byte of fractional precision

Just remember to divide by 256 (or simply discard least significant byte) to
recover whole integer answer after multiply with inflated coefficients!

Date: 7/26/2015
Slide: 31

Log Book

Copyright ComroeStudios LLC, ©2015

Software Overview

• Modtronix provides an extensive collection
of software with the SBC65EC
– Web Server

– Interrupt Service
– Web Page substitution macros

• Modification to the Modtronix software can
create a complete monitoring system

Date: 7/26/2015
Slide: 32

Log Book

Copyright ComroeStudios LLC, ©2015

Interrupt Rate and ISR Variables

In websrv65_v310/src/net/tick.h

Change:
#define TICKS_PER_SECOND (100ul) // 10ms

To:
#define TICKS_PER_SECOND (1200ul) // 1/1200sec = .8 33msec

Add:
extern BYTE tick12Count;
extern BYTE tick20Count;
extern BYTE breakerNumber;
extern int min_sample;
extern int max_sample;
extern int Adc_sample;
extern BYTE isamp;
extern long Input;
extern long Output;
extern long Intermediate;
extern long Intermediate1;
extern long Intermediate2;
extern long Temp;
extern BYTE* p_Temp;
extern BYTE diag;

Extern definitions added because the variables are defined in tick.c,
while declared extern in tick.h which will be included with all other files
that will reference them (mostly mxwebsrvr.c, & a couple others)

In websrv65_v310/src/net/tick.c

Add:
BYTE tick12Count;
BYTE tick20Count;
BYTE breakerNumber;
int min_sample;
int max_sample;
int Adc_sample;
BYTE isamp;
long Input;
long Output;
long Intermediate;
long Intermediate1=8192;
long Intermediate2=8192;
long Temp;
BYTE* p_Temp;
BYTE diag;

Add to TickInit():
tick12Count = 0;
Tick20Count = 0;
breakerNumber = 0;

Date: 7/26/2015
Slide: 33

Log Book

Copyright ComroeStudios LLC, ©2015

Dimension Array for Output Measurements

In websrv65_v310/src/appcfg.c

Change:
WORD AdcValues[ADC_CHANNELS];

To:
int AdcValues[ADC_CHANNELS];
Long metric = 0;

In websrv65_v310/src/projdefs.c

Change:
#define ADC_CHANNELS 12

To:
#define ADC_CHANNELS 40

Set to the number of breakers to be polled
Comment out or delete the test for ADC_CHANNELS<0 || ADC_CHANNELS>12

Change:
extern WORD AdcValues[ADC_CHANNELS];

To:
extern int AdcValues[ADC_CHANNELS];
extern long metric;

ADC_CHANNELS was intended to provide access to
each A/D pin on the PIC. We redefine it for

independent measurement for each input on every
interface module. Define this for only the number
intended to be measured (less than or equal to 16
times the number of connected interface modules).

Adc_Values[ADC_CHANNELS] array was intended to
be A/D samples … strictly positive values from 0 to

1023. We redefine it to be the max – min value of the
output of the IIR digital filter. Numerics should be “int”
rather than “WORD” but since our “difference” should
always be positive, probably not really important to

change.

Date: 7/26/2015
Slide: 34

Log Book

Copyright ComroeStudios LLC, ©2015

Interrupt Service Routine

In websrv65_v310/src/mxwebsrvr.c

Change:
///
//High Interrupt ISR

TickUpdate();

To:
///
//High Interrupt ISR
//--
// Preset TMR0 for next interrupt
// in 1/1200th of a second
//--
TMR0H = TICK_COUNTER_HIGH;
TMR0L = TICK_COUNTER_LOW;

//--
// read the 10bit Analog to Digital Converter
// output initiated during the prior ISR
//--
Adc_sample = ((WORD)ADRESH << 8) | (WORD)ADRESL;
Input = Adc_sample;
metric += Input;

//--
// Digital IIR Filter "Temp" scaled by 2^8 coef's
//--
Temp = 185*Intermediate2 - 425*Intermediate1;

The ISR routine begins with presetting for the next
timer to trigger the next interrupt.

The A/D output is read from ADRESH & ADRESL,
transferred to “Input”, and an input summation “metric”
is accumulated. The metric is to later judge whether

signal is present on an input.

“Temp” is the IIR Filter multiplication of prior
intermediate values times filter coefficients inflated by

256

Date: 7/26/2015
Slide: 35

Log Book

Copyright ComroeStudios LLC, ©2015

Interrupt Service Routine (continued)

//--

// Digital IIR Filter "Temp" divided by 2^8

// MS Byte must be all FF's or all 00's

// (max value <2^24 which is 16,777,216)

// nominal value 8,192*425 (larger coef) = 3,481,600

//--

p_Temp = (BYTE*)&Temp;

p_Temp[0] = p_Temp[1];

p_Temp[1] = p_Temp[2];

p_Temp[2] = p_Temp[3];

//--

// Input summation

//--

Intermediate = Input - Temp;

//--

// Digital IIR Filter delay

//--

Intermediate2 = Intermediate1;

Intermediate1 = Intermediate;

//--

// Digital FIR Filter (IIR Filter output summation)

//--

Output = Intermediate-Intermediate2;

Because “Temp” is a partial product sum of
intermediate values inflated by 256, after the multiply
we immediately divide “Temp” by 256. Since this is 8
bits, we do a byte shift rather than performing a divide.

“p_Temp” is merely used as a pointer to the 4 byte
“Temp” variable.

No attempt is made to bit shift the MS bit of the MS
byte of “Temp”. As long as the max value is

<16,777,216, the MS byte would be all 00’s or all FF’s
anyway.

Completing the digital filter is trivial …
1. Compute a new intermediate
2. Transfer (delay) prior intermediate outputs
3. Compute output

Date: 7/26/2015
Slide: 36

Log Book

Copyright ComroeStudios LLC, ©2015

Interrupt Service Routine (continued)

//--

// keep the max & min samples during 2nd cycle

//--

if (tick20Count >= 20)

{

if (Output > max_sample)

max_sample = Output;

if (Output < min_sample)

min_sample = Output;

}

//--

// increment a count of 40 samples across

// a pair of 60hz cycles (20 counts per cycle)

// 20*1/1200 sec = 1/60 sec

//--

tick20Count++;

//--

// toggle a digital output each 60hz cycle

//--

if (tick20Count == 20) LATB0 ^= 1;

tick20Count is counting interrupts of each input. If
we’re observing the 2nd 60 Hz cycle, observe (and

save) max and min values of Output.

Then, perform the actual increment of “tick20Count”

LATB0 is toggled merely to observe the 60Hz interrupt
service cycles on an unused PIC output for diagnostic

purposes.

Date: 7/26/2015
Slide: 37

Log Book

Copyright ComroeStudios LLC, ©2015

Interrupt Service Routine (continued)

//--

// do on last sample of a 60hz cycle ...

//--

if (tick20Count >= 40)

{

//--

// compute & save filtered Vp-p value

// lowpass filter Vp-p (average with prior average)

// in an int array for current breaker number

//

// expect inputs centered upon ~512

// 40 samples of 512 make an input metric of 20,480

// metric must be at least HALF this or assume

// there is no transducer board on this input

//--

if (metric > 10000)

AdcValues[breakerNumber] = (AdcValues[breakerNumber] + max_sample - min_sample)/2;

else

AdcValues[breakerNumber] = 0;

//--

// toggle a digital output at end of 60hz cycle pair

//--

LATB0 ^= 1;

We already used tick20Count to determine if we’re in
the 2nd 60Hz cycle for min/max determination.

Here, we’ll test tick20Count again … when it’s reached
40 we’re done with this measurement. Everything

within this conditional branch is to be performed on a
completed sample.

We accumulate A/D samples of an input in a variable
named “metric”. If we’re selecting an interface address
that doesn’t enable a physical interface module, then

“metric” won’t have accumulated to an expected value
of at least 20,480.

If we don’t see at least 10,000, then zero out the value.

Presuming “metric” is above minimum, AVERAGE the
new measurement (max_sample – min_sample) with
the prior AdcValue. Averaging is simply a low pass

filter to smooth out measurement fluctuation.

LATB0 is toggled merely to observe the 60Hz interrupt
service cycles on an unused PIC output for diagnostic

purposes.

Date: 7/26/2015
Slide: 38

Log Book

Copyright ComroeStudios LLC, ©2015

Interrupt Service Routine (continued)

//--

// reset temp's for next pair of 60hz cycles

//--

tick20Count = 0;

max_sample = 0;

min_sample = 0;

Intermediate2 = 8192;

Intermediate1 = 8192;

metric = 0;

//--

// advance breaker number, mod ADC_CHANNELS

//--

breakerNumber++;

if (breakerNumber >= ADC_CHANNELS)

breakerNumber = 0;

//--

// output transducer board address,

// and select PIC ADC input for next 60hz cycle

//--

ADCON1 = 0x0B;

TRISF = 0x00;

LATF = ((breakerNumber&0x3C)<<2) | ((breakerNumber& 0x3C)>>2);

ADCON0 &= ~0x3C;

ADCON0 |= (breakerNumber&&0x03)<< 2;

}

Restore temp variables to starting values for next input
measurement

Step to the next breaker number,
modulo ADC_CHANNELS

The least significant 2 bits of breaker address will
select which of the 4 analog inputs to A/D sample.

The next 4 bits of breaker address are written to PIC
outputs to select interface board, and one of the 4016

chips on that interface board

Date: 7/26/2015
Slide: 39

Log Book

Copyright ComroeStudios LLC, ©2015

Interrupt Service Routine (continued)

//--

// increment a count of 12 samples in 10msec

// 12*1/1200 sec = 1/100 sec

//--

tick12Count++;

//--

// if 10msec passed, increment legacy 10msec counter

//--

if (tick12Count >= 12) {

tickCount++;

tick12Count = 0;

if (--tickHelper == 0) {

tickHelper = TICKS_PER_SECOND;

tickSec++;

}

}

//--

// Set ADC to convert newly selected input

// to be read upon next ISR

//--

ADCON0_ADON = 1;

ADCON0_GO = 1;

The Modtronix web server has a 10msec “tickCount”
counter

This corresponds to 12 interrupts at 1200Hz, so
increment a tick12Counter every interrupt

Everytime tick12Counter passes 12, reset it, and count
the legacy “tickCount”

Last thing we do in the ISR routine is to trigger the A/D
converter to take another measurement

Date: 7/26/2015
Slide: 40

Log Book

Copyright ComroeStudios LLC, ©2015

Initialization

Void main(void)

{

-

- various initializations

- performed once upon startup

- for the PIC and webserver

-

while(1)

{

- various actions to

- be repeated forever

}

}

In websrv65_v310/src/mxwebsrvr.c
The Modtronix server initialization begins at main()

Followed by an infinite loop

Insert the following initialization HERE

//---

// Set ADCON1:

// b5=0, b4=0 ==> Vref+ = VDD, Vref- = VSS

// b3, b2, b1, b0 = 1011 ==> AN0-3 Analog, AN4-11 Di gital

//---

ADCON1 = 0x0B;

for (isamp=0; isamp<ADC_CHANNELS; isamp++)

AdcValues[isamp] = 0;

//---

// Make RF7,6,5,4 all outputs -- transducer board ad dress

//---

TRISF = 0x00;

• Set PIC inputs and outputs for
interface modules

• Initialize the AdcValues array

Date: 7/26/2015
Slide: 41

Log Book

Copyright ComroeStudios LLC, ©2015

External Watch Dog Timer

In websrv65_v310/src/mxwebsrvr.c

Put this in TWO places:
• In the main() initialization section before the infinite while(1) loop
• In the interrupt HighISR() loop where it’ll be repeated 1200 times a

second

//---

// Normal external watchdog timer state

// Make RC0 = input & RC0 = 1

//---

TRISC = 0xff;

LATC0 = 1;

Everytime we process an ADC variable macro found on a
fetched webpage, pull the line to the external watch dog timer

In main initialization and 1200 Hz ISR routine, return the
line to the external watch dog timer to idle state

In websrv65_v310/src/cmd.c

///

//ADC variables

else if (tagGroup == VARGROUP_ANALOG)

{

if (tagVal < 40)

pGetTagInfo->ref = cmdGetWordVar(ref, pGetTagInfo-> val, AdcValues[tagVal]);

TRISC = 0; // set tickle line to output to external WDT

LATC0 = 0; // set tickle line low to discharge exter nal WDT

return 1; //One byte was written

}

The instructions will permit the program
to run without WDT reset only as long
as it continues responding to webpages
containing ADC macros on a periodic
basis. If there is any lapse, the WDT
will pull the reset line to the PIC.

Date: 7/26/2015
Slide: 42

Log Book

Copyright ComroeStudios LLC, ©2015

Web Page Macro

WORD cmdGetTag(GETTAG_INFO* pGetTagInfo)

{

-

- Detects various predefined macro tags

- followed by a 2 digit tag number

-

else if (tagGroup == VARGROUP_ANALOG)

{

- perform A/D measurement on input

- corresponding to tag number

- return that array element

}

}

In websrv65_v310/src/cmd.c
The Modtronix server can substitute various macros embedded within web pages with variables.

It already has support for a macro to be replaced with an element of the AdcValues[array].

REPLACE the entire conditional branch body
{

if (tagVal < ADC_CHANNELS)

pGetTagInfo->ref = cmdGetWordVar(ref, pGetTagInfo-> val, AdcValues[tagVal]);

return 1; //One byte was written

}

• In our system, all the AdcValues[array] are perpetually updated by ISR
• We don’t have to perform a measurement when an analog variable group tag is encountered

… Simply return the array element pointed to by the tag number

%n00
macro to be replaced with AdcValues[0]

%n04
macro to be replaced with AdcValues[4]

Date: 7/26/2015
Slide: 43

Log Book

Copyright ComroeStudios LLC, ©2015

Webpages

• You can put both PIC software and webpages into the
modtronix flash

• Macros can be inserted into html pages which will be
substituted with current AdcValues when fetched

• Macros can alternatively be inserted into a file in
javascript format

AdcValues=["%n00","%n01","%n02","%n03","%n04","%n05 ","%n06","%n07","%n08","%n09","%n0A","%n0B"];

• This is my preference, as the PIC is intended to be
polled. Format for html display is not it’s intended job

• Or you could put the macros in a comma or tab delimited
format or anything of your choosing

Date: 7/26/2015
Slide: 44

Log Book

Copyright ComroeStudios LLC, ©2015

Output Calibration

Using a kill-a-watt or your own current or watt meter,
record the AdcValue output for various loads. It
should hopefully be somewhat linear. You can then
apply this as a scaling factor to directly convert to
watts or current as meets your need.

If you’re going to use a
common torroid for all
current transformer modules,
you could put the scaling to
watts or current into the
modified modtronix code
upon completion of each line
sample. Otherwise it may
be just left as unscaled
AdcValue and scaled as
desired when used for
display or recording.

Date: 7/26/2015
Slide: 45

Log Book

Copyright ComroeStudios LLC, ©2015

Example

A unit was deployed to monitor well and
reservoir pump circuits

Controller and one interface module
deployed next to breaker box
Outlet (on it’s own breaker) added for
DC adapters for SBC65EC, and an
internet radio (no ethernet available at
the controller’s location)

A pair of current transformer modules
off the breaker’s for the well pump and
reservoir pump. Both are 220v
breakers. Just like 110v standard
breakers a current transformer module
is only needed on one side.

Date: 7/26/2015
Slide: 46

Log Book

Copyright ComroeStudios LLC, ©2015

Polling / Monitoring

There’s no point in monitoring without
data collection that can do something

ScanEngine
Explorer

Poll

Reply

Any 24/7/365 Linux or
Windows computer

My own network
management
application software

The SBC controller

What follows is an example of what a polling /
monitoring application might do

The measurement system is completely independent of whatever the polling / monitoring application does

Date: 7/26/2015
Slide: 47

Log Book

Copyright ComroeStudios LLC, ©2015

Monitoring Functional Summary

Functions of the monitoring application are:
• Poll the PIC controller for data
• Provide web status

– Provide a current status system summary
– Meaningfully chart the received data
– Infer and chart water drawn

• Hourly
• Daily
• Monthly

– Alarm on fault condition
• Water on failure
• Pump failures
• Failures can be logged, emailed, or sent as text to cellphone

Date: 7/26/2015
Slide: 48

Log Book

Copyright ComroeStudios LLC, ©2015

Polling script

ScanEngine Explorer Script
>Assign RepeatTimer = 6
Repeat

>Assign IP = 192.168.2.252 //PIC board
>Assign HTTPPage = jsdata.cgi
>Assign HTTPSitename = "Well Monitor"
>Assign HTTPUsername:Password = admin:pw
Fetch

If HTTPReplyCode == 200
// process received data

Else
// no data received

EndIf

The ScanEngine Explorer script is
instructed to run every 6 seconds.

Every time it runs, it will send an
http FETCH to the IP assigned to
the PIC board, for the webpage I
named “jsdata.cgi” which is what I
named a webpage in the PIC

The script tests the reply code, such
that it can execute different code
when the PIC responds vs when
there is no response

The modtronix base web server function will respond to http fetch requests. The
code set in the modtronix PIC should include a web page with embedded
macros to place latest measured values in an http fetched response.

Date: 7/26/2015
Slide: 49

Log Book

Copyright ComroeStudios LLC, ©2015

Webpage Scraping

On an earlier slide a webpage placed on the PIC was
described with Macros that would substitute collected data
into any web response:
AdcValues=["%n00","%n01","%n02","%n03","%n04","%n05 ","%n06","%n07","%n08","%n09","%n0A","%n0B"];

So, returned http fetch response might look like this:
AdcValues=[“1329",“0",“332“, etcetcetcetc];

ScanEngine Explorer http scraping script
page [jsdata.cgi]
port [80]
find [AdcValues=]
name [AdcValues0]
find ["]
text_upto ["]
name [AdcValues1]
find [,"]
text_upto ["]
more of the same

Provide a name for the next scraped text
Advance to the next quote,
and scrape text to the next quote

Provide a name for the next scraped text
Advance to the next comma/quote,
and scrape text to the next quote

In ScanEngine Explorer a
web page scraping script can
be created and associated
with any fetched page, and
further assign each scraped
text (values) with names we
define here … in this case,
AdcValues0, AdcValues1, etc

Date: 7/26/2015
Slide: 50

Log Book

Copyright ComroeStudios LLC, ©2015

Scaling the Measurements

ScanEngine Explorer Script
New Variable well init
New Variable booster init
>Assign RepeatTimer = 6
Repeat

>Assign IP = 192.168.2.252 //PIC board
>Assign HTTPPage = jsdata.cgi
>Assign HTTPSitename = "Well Monitor"
>Assign HTTPUsername:Password = admin:pw
Fetch

If HTTPReplyCode == 200
// process received data
// normalize pump circuit current to amps
Assign well = 0.007166667*Object.AdcValues0
Assign booster = 0.007166667*Object.AdcValues1

Else
// no data received

EndIf

Define script variables for measured
AdcValues for well and booster
pump currents

Scale the AdcValues to current in amps
The measured values may be properly scaled
to current (A), or apparent power (VA)

With a web page scraping script defined for the name of our fetched page
(jsdata.cgi), our script can reference (with “Object.” suffix) the scraped data

Date: 7/26/2015
Slide: 51

Log Book

Copyright ComroeStudios LLC, ©2015

Chart the Pump Current

ScanEngine Explorer Script

Assign well = 0.007166667*Object.AdcValues0
Assign booster = 0.007166667*Object.AdcValues1
>Assign LogFilename = "Amps Last Hour“ //chart pump c ircuit amps
>Assign ChartSeconds = 10
>Assign ChartType1 = MaxValue
>Assign ChartType2 = MaxValue
>Assign ChartLegend1 = Well
>Assign ChartLegend2 = Booster
>Assign ChartAutoscale1 = 25
>Assign ChartAutoscale2 = 25
Chart well , booster

>Assign LogFilename = "Amps Last 10 hrs"
>Assign ChartSeconds = 100
Chart well , booster

>Assign LogFilename = "Amps Last 2 days"
>Assign ChartSeconds = 500
Chart well , booster

>Assign LogFilename = "Amps Last 10 days"
>Assign ChartSeconds = 2000
Chart well , booster

Define a 2 value chart
Autoscale for 25 Amps max value
Define 10 seconds per point

Make similar charts for 100
seconds per point, 500 seconds
per point, and 2000 seconds
per point

Once the measurements have been scaled to current (A), the currents can be charted

View the produced charts on the next slide �

Date: 7/26/2015
Slide: 52

Log Book

Copyright ComroeStudios LLC, ©2015

Scripted Charts

Charts suitable for
status web pages

10 sec per point
X 400 points

100 sec per point
X 400 points

500 sec per point
X 400 points

2000 sec per point
X 400 points

Date: 7/26/2015
Slide: 53

Log Book

Copyright ComroeStudios LLC, ©2015

Counting Booster Pump Activations

• The well pump is ~470ft below ground, and
pumps up to replenish the reservoirs.

• The booster pump is triggered on by pressure
tank low pressure, and turned off by pressure
tank high pressure settings.

• It takes a finite amount of water drawn from the
reservoirs to bring the pressure tank back to
max … ~72 gallons on our system

• Although it varies (it takes more gallons to
replenish the pressure tank when water is being
simultaneously drawn), none-the-less counting
pressure tank booster pump activations provides
a fairly accurate inferred flow rate meter without
actually having a water flow rate meter.

Date: 7/26/2015
Slide: 54

Log Book

Copyright ComroeStudios LLC, ©2015

Counting Booster Pump Activations

ScanEngine Explorer Script

Add booster pump state and count variables
New Variable booster_pump_state init off
New Variable booster_count init 0
New Variable hourly_booster_count init 0
New Variable daily_booster_count init 0

After charting, decide if booster pump is on or off
(arbitrarily, test if it’s drawing more than 5 amps)

If booster >= 5 //determine booster pump status & c ount activations
If booster_pump_state == off

Assign booster_pump_state = on
Assign booster_count = booster_count + 1
Assign hourly_booster_count = hourly_booster_count + 1
Assign daily_booster_count = daily_booster_count + 1

EndIf
Else

If booster_pump_state == on
Assign booster_pump_state = off

EndIf
EndIf

Increment booster counts
every time we determine the
booster pump has turned on

Date: 7/26/2015
Slide: 55

Log Book

Copyright ComroeStudios LLC, ©2015

Charting Usage

Usage can be depicted daily or monthly, displaying hourly
usage or daily usage (respectively) for the current and prior

3 days and months

ScanEngine Explorer does not make these graphs. ScanEngine
Explorer script creates jsdata files with array data of booster counts that

javascript on a webpage can display graphically as illustrated here.

Date: 7/26/2015
Slide: 56

Log Book

Copyright ComroeStudios LLC, ©2015

Jsdata Files with Booster Counts

ScanEngine Explorer scripts create these jsdata files,
which webpages can visually display with javascript

var hourly=new Array(24);
var datestring="08/18/15";
hourly=[0,0 ,0,0];
hourly[00]="1";
hourly[01]="2";
hourly[02]="6";
hourly[03]="3";
hourly[04]="1";
hourly[05]="0";
hourly[06]="2";
hourly[07]="2";
hourly[08]="1";
hourly[09]="1";
hourly[10]="2";
hourly[11]="1";
hourly[12]="1";
hourly[13]="1";
hourly[14]="1";
hourly[15]="2";
hourly[16]="3";
hourly[17]="3";
hourly[18]="4";
hourly[19]="0";
hourly[20]="8";
hourly[21]="8";
hourly[22]="8";
hourly[23]="4";

var daily=new Array(31);
var monthstring="August";
var daysinmonth=31;
daily=[0, 0,0,0,0,0,0,0,0,0];
daily[0]=80;
daily[1]=87;
daily[2]=76;
daily[3]=75;
daily[4]=71;
daily[5]=77;
daily[6]=80;
daily[7]=56;
daily[8]=51;
daily[9]=60;
daily[10]=55;
daily[11]=60;
daily[12]=52;
daily[13]=100;
daily[14]=57;
daily[15]=67;
daily[16]=57;
daily[17]=65;
daily[18]=60;

jsdata file for monthly
usage chart on prior
slide

Booster count for prior day
appended every midnight

jsdata file for daily
usage chart on prior
slide

Booster count for prior hour
appended every hour

Date: 7/26/2015
Slide: 57

Log Book

Copyright ComroeStudios LLC, ©2015

Trigger for Hourly Rollover

Maintaining these jsdata files requires script detection of
when an hourly, daily, or monthly rollover occurs

ScanEngine Explorer Script

Add variables for today’s date, hour, month, and day
New Variable today init Left(timestamp,8)
New Variable hour init 99
New Variable month init Left(today,2)
New Variable day init Mid(today,3,2)-1

After counting booster pump activations, decide if an hourly rollover occurred

If hour != Mid(timestamp,9,2)

If hour != 99

>Assign LogFilename = today_hourly_js

Textlog "hourly[" + hour + "]=\"" + hourly_booster_ count + "\";"

EndIf

Assign hourly_booster_count = 0

Assign hour = Mid(timestamp,9,2)

EndIf

timestamp returns fixed system time/date format

mm/dd/yy hh:mm:ss

Every hourly rollover, append new line to
daily jsdata file, clear the hourly count,

and refresh the hour variable

Date: 7/26/2015
Slide: 58

Log Book

Copyright ComroeStudios LLC, ©2015

Trigger for Daily Rollover

It may be observed from the earlier usage charts, that the script is maintaining
CURRENT monthly and daily data, along with the prior 3 days & months

Every daily rollover, need to close today’s daily jsdata file and rename older files

ScanEngine Explorer Script

After performing hourly rollover, decide if a daily rollover occurred

If today != Left(timestamp,8)

Delete Textlog three_days_old_hourly_js

Rename Textlog two_days_old_hourly_js , three_days_o ld_hourly_js

Rename Textlog yesterday_hourly_js , two_days_old_ho urly_js

Rename Textlog today_hourly_js , yesterday_hourly_j s

>Assign LogFilename = today_hourly_js

Textlog "var hourly=new Array(24);"

Textlog "var datestring=\"" + Left(timestamp,8) + " \";"

Textlog "hourly=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0];"

Assign today = Left(timestamp,8)

>Assign LogFilename = this_month_daily_js

Textlog "daily[" + day + "]=" + daily_booster_count + ";"

Assign day = Mid(timestamp,3,2)-1

Assign daily_booster_count = 0

(continue to monthly rollover detection)
EndIf

Delete the oldest day jsdata file

Rename (age) the other jsdata
files by one day

Create a brand new (and empty)
jsdata file for the new day

Every daily rollover, append new
line to monthly jsdata file, clear
the daily count, and refresh the

day variable

Remember the new date

Date: 7/26/2015
Slide: 59

Log Book

Copyright ComroeStudios LLC, ©2015

Trigger for Monthly Rollover

The daily rollover continues with testing for
monthly rollover

ScanEngine Explorer Script

After performing daily rollover, decide if a monthly rollover occurred

If today != Left(timestamp,8)

(continued from daily rollover)
If month != Left(timestamp,2)

Delete Textlog three_months_old_daily_js

Rename Textlog two_months_old_daily_js , three_month s_old_daily_js

Rename Textlog last_month_daily_js , two_months_old_ daily_js

Rename Textlog this_month_daily_js , last_month_dail y_js

Assign month = Left(timestamp,2)

>Assign LogFilename = this_month_daily_js

Textlog "var daily=new Array(31);"

Textlog "var monthstring=\"" + monthstring + "\";“

Textlog "var daysinmonth=" + daysinmonth + ";“

Textlog "daily=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,0,0,0,0,0,0,0,0];“

EndIf

EndIf

Delete the oldest month jsdata file

Rename (age) the other
jsdata files by one month

Create a brand new (and empty)
jsdata file for the new month

Remember the new month

Programatically calculating daysinmonth and monthstring is
not shown as neither interesting, instructive, nor challenging

Date: 7/26/2015
Slide: 60

Log Book

Copyright ComroeStudios LLC, ©2015

User Interface

While ScanEngine Explorer has a user interface,
a web based application interface for the monitor
data is most appropriate. ScanEngine Explorer’s
user interface is specifically for interacting with
network accessible devices and the script, not the
arbitrary data a script might produce or maintain.

ScanEngine Explorer
SCRIPTS,

Charts, jsdata files,
any/all script variables

Any 24/7/365 Linux or
Windows computer

add any web server

Internet

Install any free web server on the machine running the polling script, along with
any web pages for display of charts, scripts, or any/all available script variables.

The web based user interface is completely independent from the scripted polling.

The statistics panel from ScanEngine
Explorer is useful for status and health

of the continuous running script

